

Surpresseurs à pistons rotatifs Série OMEGA

Débit de 0,5 à 160 m³/min — Surpression jusqu'à 1000 mbar, vide jusqu'à 500 mbar

Surpresseurs à pistons rotatifs KAESER économiques et robustes

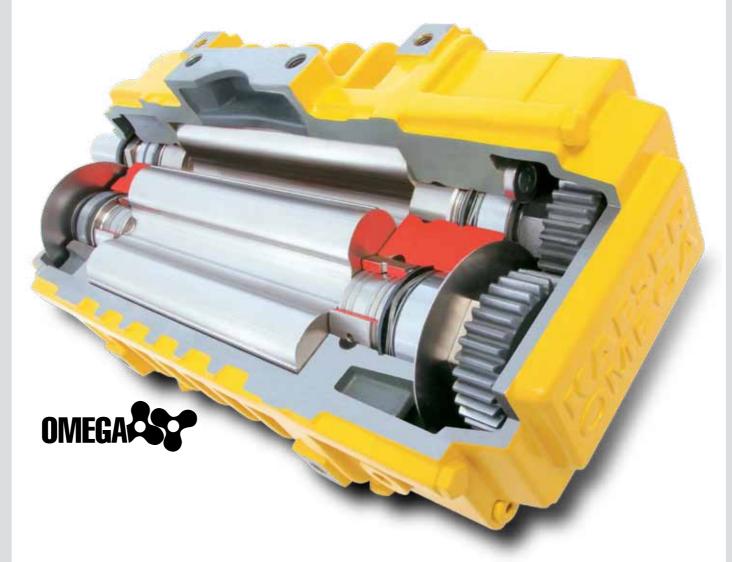
La construction robuste des surpresseurs à pistons rotatifs tri-lobes KAESER autorise, sur l'ensemble de la gamme, des pressions de service de 1000 mbar (eff.) et des températures finales de compression de160 °C. Autrement dit, l'utilisateur peut être assuré de la fiabilité des surpresseurs KAESER, même à une pression de service et une température d'aspiration élevées. En fonctionnement à vitesse variable, la stabilité thermique des blocs offre une large plage de régulation et permet d'économiser de l'énergie par le réglage du surpresseur aux plus bas débits possibles. La qualité d'équilibrage Q 2.5, généralement réservée aux rotors de turbines, garantit un fonctionnement sans vibrations qui allonge la durée de vie des roulements et donc abaisse les coûts totaux d'exploitation.

Les blocs surpresseurs Kaeser sont les seuls à être équipés de roulements à rouleaux cylindriques dont la capacité de charge dynamique est dix fois supérieure à celle des roulements à billes à contact oblique. Pour l'utilisateur, la très longue durée de vie de ces roulements (L_{h10} 10 0000 h) se traduit par une plus grande disponibilité de la machine avec des intervalles de changement des roulements plus longs et par conséquent des frais d'entretien réduits.

Les blocs surpresseurs Kaeser se distinguent également par leurs pignons synchrones à denture droite. L'espace minimal entre les pales du rotor et le carter dû au faible jeu de denture contribue pour une grande part à l'excellent rendement volumétrique et au débit spécifique élevé (Nm³ /kWh). De plus, contrairement à une denture oblique, la denture droite n'exerce pas de forces axiales sur le rotor, ce qui permet d'utiliser des roulements à rouleaux cylindriques de grande longévité.

Fonctionnement du surpresseur à pistons rotatifs OMEGA P de KAESER

La rotation des pistons emprisonne l'air entre le rotor et le carter côté aspiration. En poursuivant sa rotation, l'extrémité du rotor atteint une ouverture excentrique du carter. Cette chambre de préadmission sert à équilibrer progressivement la pression entre l'air aspiré captif et l'air qui afflue du côté refoulement. Dans les surpresseurs bi-lobes, l'air passe sans transition dans la chambre de refoulement. Par rapport à ces surpresseurs, les surpresseurs tri-lobes engendrent moins de pulsations du fait de l'équilibrage de la pression. L'air est ensuite poussé dans la tuyauterie à contre-pression.



Des surpresseurs à pistons rotatifs pour de l'air exempt d'huile

Qualité « Made in Germany »

Les surpresseurs à pistons rotatifs KAESER. c'est la qualité « Made in Germany » : nous fabriquons nous-mêmes les blocs et les rotors selon les standards les plus rigoureux, et des méthodes de mesure ultramodernes assurent une qualité constante.

Un carter robuste

La structure fortement nervurée du carter garantit une rigidité maximale et une dissipation de chaleur optimale. Les sections de carter sont moulées d'un seu

Roulements robustes surdimensionnés

Les roulements à rouleaux cylindriques absorbent l'intégralité des forces radiales alternatives exercées par le fluide sur les rotors avec une intensité qui varie en permanence ; la durée de vie de ces roulements peut atteindre 100 000 heures de service.

Garniture d'étanchéité inusable

L'étanchéité est assurée en standard par des segments de type labyrinthe éprouvés, avec des chambres de détente. D'autres types d'étanchéité sont disponibles sur demande.

Synchronisation précise

Les engrenages à denture droite de haute qualité (classe 5f 21) avec un jeu minimal de la denture contribuent fortement à l'excellent rendement volumétrique des surpresseurs.

Graissage optimal

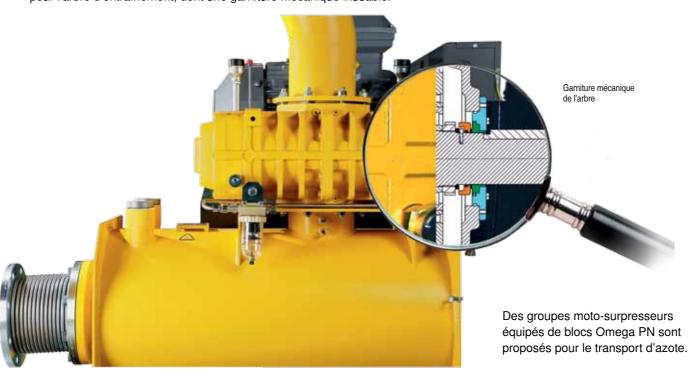
Des disques centrifuges montés à chaque bout d'arbre répartissent l'huile sur les roulements pour assurer en permanence leur graissage optimal. Le graissage s'effectue aussi bien côté pignon que côté moteur.

Des rotors résistants

L'usinage monobloc du rotor et de l'arbre du surpresseur garantit la sécurité de fonctionnement et une grande durée de vie. Qualité d'équilibrage Q 2.5 (rotors de turbine). Les vides du rotor dus au moulage sont obturés par des couvercles.

Des rotors avec un joint d'étanchéité

Grâce à la forme spéciale des extrémités de rotors munies d'un joint d'étanchéité intégré, le bloc surpresseur résiste beaucoup mieux aux impuretés de l'air aspiré et à des surchauffes de courte durée.



Supresseurs à pistons rotatifs pour le transport d'azote Type Omega PN

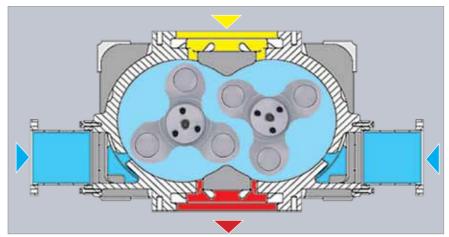
Domaine d'application

Certaines matières en vrac doivent être transportées dans un système étanche sous atmosphère azotée.

Il faut donc impérativement limiter les fuites des composants du système – et donc du surpresseur à pistons rotatifs. Les surpresseurs de type PN spécialement conçus pour ce domaine d'application sont proposés avec trois types de joints tournants pour l'arbre d'entraînement, dont une garniture mécanique inusable.

Caractéristiques techniques OMEGA P et OMEGA PN

Type OMEGA P		21P	22P	23P	24P	41P	42P	43P	52P	53P	62P	63P	64P	82P	83P	84P
Débit total maxi	m³/min	5,0	6,3	8,4	10,6	12,4	15,9	22,5	28,3	41,5	41,6	58,6	74,2	96,7	129,3	156
	m³/h	300	380	500	630	745	950	1350	1700	2490	2500	2500	4450	5800	7760	9360
Vitesse de rotation maxi	tr/min	6200	6000	5800	5450	5000	4800	4500	4200	4200	3700	3700	3400	3000	2700	2500
Pression différentielle maxi	mbar															
Surpression	mbar	1000	1000	1000	800	1000	1000	1000	1000	1000	1000	1000	800	1000	1000	800
Vide	mbar	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Puissance maxi	kW	10	12,5	15	16	23	31	43	55	75	81	81	110	183	200	250
Dimensions	mm															
Longueur sans arbre		325	360	415	480	395	445	545	545	785	625	625	1070	825	1040	1370
Largeur	mm	206	206	206	206	300	300	300	365	365	440	440	480	625	625	625
Hauteur	mm	170	170	170	170	240	240	240	290	290	330	330	440	460	610	710
Bride de raccordement DN	mm	50	65	65	80	80	100	100	150	150	200	200	250	250	300	300
Poids	kg	32	36	42	51	86	100	114	163	205	326	326	410	600	890	1150


Les caractéristiques techniques des blocs Omega PN sont identiques à celles des blocs Omega 21 P à Omega 83 P.
La pression d'aspiration pour les surpresseurs Omega PN utilisés en surpression, et la pression de décharge pour les surpresseurs fonctionnant en dépression sont limitées à 900 à 1100 mbar (abs).

Surpresseur fonctionnant en vide avec refroidissement par préadmission type Omega PV

Domaine d'application

Utilisation pour vide primaire jusqu'à 100 mbar (abs) ou dépression de 900 mbar.

Fonction

Lorsque le vide (en jaune) est emprisonné entre le rotor et le carter, les rotors, en poursuivant leur rotation, font entrer de l'air atmosphérique (en bleu) dans le bloc surpresseur par les chambres de préadmission. Les flux d'air sous vide et d'air atmosphérique se mélangent et la chaleur engendrée par la compression se répartit sur une masse d'air emprisonnée beaucoup plus importante. Il est ainsi possible d'obtenir les mêmes températures de refoulement qu'avec les blocs surpresseurs normaux.

Exemples d'utilisation:

Utilisation stationnaire : production de vide centralisée (photo de gauche)

Utilisation mobile : véhicules de vidange par aspiration et véhicules silos (photo de droite)

Caractéristiques techniques Omega PV

Type OMEGA PV		62PV	63PV	82PV	83PV	84PV
Capacité d'aspiration maxi pour un vide de 600 mbar m	³/min	37	51	87	117	145
Capacité d'aspiration maxi pour un vide de 800 mbar me	³/min	29	39	72	97	120
Vitesse de rotation maxi t	r/min	3700	3700	3000	2700	2500
Pression différentielle maxi	mbar					
Surpression	mbar	1000	1000	1000	1000	800
Vide	mbar	900	900	900	900	800
Puissance maxi	kW	80	100	180	220	250
Dimensions	mm					
Longueur sans arbre		625	625	825	1040	1370
Largeur	mm	440	440	625	625	625
Hauteur	mm	330	330	460	610	710
Bride de raccordement tubulure d'aspiration et de refoulement DN	mm	200	200	250	300	300
Bride de raccordement chambres de préadmission	mm	2x □ 90	2x2x □ 90	2x □130	2x2x□130	2x3x □130
Poids	kg	326	326	600	890	1150

Surpresseur de vapeur Type OMEGA B

Domaine d'application

Compression de vapeur d'eau en dépression avec refroidissement par eau

- Rotors et carter moulés en acier spécial ou en alliage au nickel-chrome.
- Plusieurs types de joints tournants intérieurs spéciaux (résistants à la corrosion et à l'usure)
- Plusieurs types de garnitures spéciales pour l'arbre
- Sens du flux vertical, de haut en bas.

Pompe à vide à pistons rotatifs Type WVC

Pour la production du vide poussé en liaison avec une pompe de pré-vide appropriée, le WCV augmente la capacité d'aspiration et le vide de la pompe de pré-vide. L'utilisation d'un convertisseur de fréquence est particulièrement recommandée car elle permet la mise en circuit simultanée de la pompe à vide à pistons rotatifs et de la pompe de pré-vide à la pression atmosphérique, ce qui réduit considérablement le temps de pompage.

Carctéristiques techniques OMEGA B

Type OMEGA B		21B	23B	41B	43B	61B	63B	82PB	83PB
Débit maxi*	m³/min	2,9	4,1	8,3	14,7	22,8	33	72	93
Débit de vapeur	kg/h*	54	76	153	273	422	612	1325	1715
Vitesse de rotation maxi	tr/min	5000	4700	3800	3400	3000	2700	2800	2500
Vide maxi	mbar	500	500	500	500	500	500	500	500
Température d'entrée maxi	°C	85	85	85	85	85	85	85	85
Puissance maxi	kW	5,5	8,5	12	20	30	47	93	139
Dimensions	mm								
Longueur sans arbre									
Largeur	mm	voir 21P	voir 23P	voir 41P	voir 43P	voir 61P	voir 63P	voir 82P	voir 83P
Hauteur	mm	VOII ZIF	VOII ZOF	VOII 41F	VUII 43F	VOII O I F	VOII OSF	VOII OZF	VOII OSF
Bride de raccordement tubulure d'aspiration et de refoulement DN	mm								
Poids	kg	40	43	90	120	280	350	750	1020

^{*} pour un vide de 500 mbar et avec refroidisssement par eau

Caractéristiques techniques WVC

Туре	WVC 180	WVC 360	WVC 800	WVC 1200	WVC 2500	WVC 4000	WVC 5000		
Capacité d'aspiration nominale à 50 Hz 1)	m³/h	170	310	745	1120	2450	3670	4890	
Capacité d'aspiration effective maxi de la pompe de pré-vide de	m³/h	150	280	660	990	2210	3260	4270	
Pour une capacité d'aspiration de la pompe à pré-vide de	m³/h	40	100	200	300	630	800	1250	
Pression partielle finale 2)	mbar	< 4 x 10 ⁻³	< 3 x 10 ⁻³	< 3 x 10 ⁻³	< 2 x 10 ⁻³				
Pression totale finale 2)	mbar	< 4 x 10 ⁻³	< 4 x 10 ⁻³	< 4 x 10 ⁻³	< 3 x 10 ⁻³				
Pression différentielle maxi admissible en service continu ³⁾ En service temporaire < 3 min	mbar mbar	130 180	100 150	80 120	80 115	50 90	50 70	35 60	
Puissance moteur	kW	1,1	1,5	3	4	7,5	11	11	
Vitesse nominale à 50 Hz	tr/min	3000							
Vitesse mini / maxi admissible à la fréquence	tr/min Hz	1200-5400 20-90	1200-5400 20-90	900-4800 15-80	900-4800 15-80	600-4500 10-75	600-4500 10-75	600-4200 10-70	
Capacité d'aspiration nominale à la vitesse maxi	m³/h	310	560	1190	1790	3670	5500	6850	
Refroidissement du joint d'étanchéité et du carter d'engrenages		Air			Eau/air 4)				
Bride de raccordement côté aspiration et refoulement PN6 DIN 2501	mm	50	65	100	100	200	200	250	
Sens du flux		Standard : vertical, de haut en bas							
Poids env. ⁵⁾	kg	48	60	145	160	360	365	520	
0 C-I DIN 00400									

¹⁾ Selon DIN 28400

²⁾ Pression finale réalisable avec une pompe à huile rotative mono-étagée

³⁾ Avec un rapport à la pompe de pré-vide de 1/5

⁴⁾ Avec étanchéité par accouplement magnétique

⁵⁾ Avec étanchéité par barrage d'huile, moteur électrique inclus

KAESER - Présence globale

KAESER, l'un des plus grands constructeurs au monde de compresseurs à vis, est présent sur tout le globe : ses filiales et partenaires commerciaux veillent dans plus de 100 pays à tenir à la disposition des utilisateurs d'air comprimé les équipements les plus modernes, les plus fiables et les plus rentables.

Ses ingénieurs conseil et techniciens hautement qualifiés apportent leur conseil et proposent des solutions individuelles à haut rendement énergétique pour tous les champs d'application de l'air comprimé. Le réseau informatique global du groupe international KAESER permet à tous les clients du monde d'accéder au savoir-faire professionnel du fournisseur de systèmes.

Le réseau global de service après vente assure de surcroît une disponibilité maximum de tous les produits KAESER.

